Relative index pairing and odd index theorem for even dimensional manifolds
نویسندگان
چکیده
منابع مشابه
Heat Kernels and the Index Theorems on Even and Odd Dimensional Manifolds∗
In this talk, we review the heat kernel approach to the Atiyah-Singer index theorem for Dirac operators on closed manifolds, as well as the Atiyah-PatodiSinger index theorem for Dirac operators on manifolds with boundary. We also discuss the odd dimensional counterparts of the above results. In particular, we describe a joint result with Xianzhe Dai on an index theorem for Toeplitz operators on...
متن کاملAn index theorem for families of Dirac operators on odd-dimensional manifolds with boundary
For a family of Dirac operators acting on Hermitian Cli ord modules over the odd dimensional compact manifolds with boundary which are the bres of a bration with compact base we compute the Chern character of the index in K of the base Although we assume a product decomposition near the boundary we make no assumptions on invertibility of the bound ary family and instead obtain a family of self ...
متن کاملAn index theorem for Toeplitz operators on odd-dimensional manifolds with boundary
We establish an index theorem for Toeplitz operators on odd-dimensional spin manifolds with boundary. It may be thought of as an odd-dimensional analogue of the Atiyah–Patodi–Singer index theorem for Dirac operators on manifolds with boundary. In particular, there occurs naturally an invariant of η type associated to K1 representatives on even-dimensional manifolds, which should be of independe...
متن کاملAn algebraic index theorem for Poisson manifolds
The formality theorem for Hochschild chains of the algebra of functions on a smooth manifold gives us a version of the trace density map from the zeroth Hochschild homology of a deformation quantization algebra to the zeroth Poisson homology. We propose a version of the algebraic index theorem for a Poisson manifold which is based on this trace density map. 1991 MSC: 19K56, 16E40.
متن کاملOn the Witten Rigidity Theorem for Odd Dimensional Manifolds
We establish several Witten type rigidity and vanishing theorems for twisted Toeplitz operators on odd dimensional manifolds. We obtain our results by combining the modular method, modular transgression and some careful analysis of odd Chern classes for cocycles in odd K-theory. Moreover we discover that in odd dimensions, the fundamental group of manifolds plays an important role in the rigidity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2011
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2010.10.002